

High Convergence:
Low Cost Multi-Die Packaging
Enables Pace Setting
Performance

Bill Gervasi

Discobolus Designs

August 27, 2012

Server Memory Challenges

High capacity needed

High performance in a multi-drop bus

Signal quality to reduce soft bit errors

Good signal amplitude

Maintaining reference planes

Good power delivery

Typical Server Class Memory Design

Four channels

3 slots per channel

Registered DIMM Architecture

Address and control: one load per slot

Data: one to four loads per slot

Zooming in on Signal Topologies

Typical 3 DIMM per channel (3DPC)

Each DRAM includes on-die termination to VTT

Zooming in on Signal Topologies

Registered Address Topology

Typical two rank design

External resistor termination to VTT

Some Factors for Signal Quality

Set by Application

Frequency
Switching time
Total loading

Controllable

Load matching
Stub length
Total parasitics
Reference planes
Power delivery

Standard Mono DRAM Packaging

- Data signals
- Address/control signals
- Clocks
- Gold wire bonds

Designed around needs of monolithic DRAM

Double Sided Boards

The "Bowtie" problem

Matching address signals are diagonally opposed

Results in long stubs

Bowtie Impact on Layout

Two routing layers just for bowtie

More crowded if stub length matching is done

Signal quality issues if stub length matching is not done

Standard Dual Die Packages

Same ballout as mono DRAM

Upper die far removed from signals due to long routing & wires

Symmetry between die may be compromised

Taming the Performance Beast

Reduce overall parasitics

Maintain reference plane

Improve power delivery

Shorten the stubs

Invensas Dual Face Down DRAM

Matched parasitics between DRAMs

(wirebond length difference = 0.1mm, compensated in substrate routing)

Reference planes maintained ball to die

Excellent power delivery

DFD Ballout Improvements

14

Reference Planes

Impact of DFD to Layout

70% reduction in stub length

"Bowtie" done in one routing layer

Full-DIMM Routing Comparison

DDP

DFD

Are We Out of Tricks?

Layout with Via-in-Pad

Improved power delivery

Reduced inductance

More copper flooding for thermal distribution

Example Design: 4Rx4 RDIMM

Simple 10 layer design

72 DRAM die

Signal Quality & Frequency

<u>Invensas @ 2133</u>

Window = 798 ps Ideal tCK = 938 ps 85% of a tCK

JEDEC card D @ 1333

Window = 1093 ps Ideal tCK = 1500 ps 73% of a tCK

Reality Check

2 DIMMs per channel

Running at DDR3-1600

Conclusions

High speed design limited by "death by a thousand paper cuts"

Using the monolithic ballout for DDPs introduces a lot of paper cuts

Rethinking DRAM stacking leads to new levels of module performance

Signal quality & power delivery can be significantly improved

Thank You

Bill Gervasi

Discobolus Designs

bilge@discobolusdesigns.com