DRAM Module Market
Overview

Bill Gervasi
Vice President, DRAM Technology
SimpleTech
Many Applications,
Many Configurations
Agenda

- Terminology review
- DRAM Market Factors
- Market: Personal Computers
- Market: Servers & Workstations
 - FB-DIMM or RDIMM?
- Market: Routers & Communications
- Market: Peripherals
DDR2 Speed Grading

<table>
<thead>
<tr>
<th>Clock Speed</th>
<th>Chip Bin</th>
<th>Data Rate</th>
<th>Module Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 MHz</td>
<td>DDR2-400</td>
<td>400 MT/s</td>
<td>PC2-3200</td>
</tr>
<tr>
<td>266 MHz</td>
<td>DDR2-533</td>
<td>533 MT/s</td>
<td>PC2-4200</td>
</tr>
<tr>
<td>333 MHz</td>
<td>DDR2-667</td>
<td>667 MT/s</td>
<td>PC2-5300</td>
</tr>
<tr>
<td>400 MHz</td>
<td>DDR2-800</td>
<td>800 MT/s</td>
<td>PC2-6400</td>
</tr>
</tbody>
</table>

X64/x72 bit data bus * chip speed
DDR3 Speed Grading

<table>
<thead>
<tr>
<th>Clock Speed</th>
<th>Chip Bin</th>
<th>Data Rate</th>
<th>Module Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 MHz</td>
<td>DDR3-800</td>
<td>800 MT/s</td>
<td>PC3-6400</td>
</tr>
<tr>
<td>533 MHz</td>
<td>DDR3-1066</td>
<td>1066 MT/s</td>
<td>PC3-8500</td>
</tr>
<tr>
<td>667 MHz</td>
<td>DDR3-1333</td>
<td>1333 MT/s</td>
<td>PC3-10600</td>
</tr>
<tr>
<td>800 MHz</td>
<td>DDR3-1600</td>
<td>1600 MT/s</td>
<td>PC3-12800</td>
</tr>
</tbody>
</table>

X64/x72 bit data bus * chip speed
Terminology

DIMM = Dual Inline Memory Module

- **UDIMM = Unbuffered**: Address bus connected directly to DRAMs, limited to 18 chips per DIMM, 2 slots
- **RDIMM = Registered**: Address bus redriven to DRAMs, enables 72 DRAMs per DIMM, 2 slots
- **FB-DIMM = Fully Buffered**: Address and data buses packetized and redriven to DRAMs, enables 36 DRAMs per DIMM, 8 slots
Terminology

- ECC = Error Correction Code
- Chip Kill (also SDDC) = enhanced variant of ECC
- Rank = DRAMs sharing a select line

- 1 rank of x8 DRAMs = 8 chips for x64 bus
 9 chips for x72 bus (ECC)
- 1 rank of x4 DRAMs = 18 chips for x72 bus
- 2Rx4 = 36 DRAMs
- 4Rx4 = 72 DRAMs
English or Metric?

<table>
<thead>
<tr>
<th></th>
<th>SDRAM</th>
<th>DDR1</th>
<th>DDR2 & DDR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMM</td>
<td>5.25 x 1.7"</td>
<td>5.25 x 1.2"</td>
<td>133.35 x 30mm</td>
</tr>
<tr>
<td>VLP</td>
<td>n/a</td>
<td>5.25 x 0.72"</td>
<td>133.35 x 18.3mm</td>
</tr>
<tr>
<td>SO-DIMM</td>
<td>2.66 x 1.25"</td>
<td>67.6 x 31.75mm</td>
<td>67.6 x 30mm</td>
</tr>
</tbody>
</table>

Metric conversion finally complete…
Module Configurations

| DDR1 | Registered DIMM (4 rank) | Micro-DIMM
| | Unbuffered DIMM | 32b-DIMM
| | SO-DIMM | 16b-SO-DIMM |
| DDR2 | Registered DIMM (4 rank) | SO-DIMM
	Mini-RDIMM (4 rank)	Micro-DIMM
	Unbuffered DIMM	16b/32b-SO-DIMM
	FB-DIMM	72b-SO-RDIMM (4 rank)
DDR3	Registered DIMM	SO-DIMM
	Mini-RDIMM (4 rank)	Micro-DIMM
	Unbuffered DIMM	16b/32b-SO-DIMM
DRAM Market Overview & Impact on Memory Modules
DRAM Density

- 1Gb transition hindered by the Perfect Storm
 - DDR1/DDR2 split on suppliers & designs
 - 110 → 90nm transition difficulties
 - 10% die penalty for 8 banks
- 512Mb DRAM will be the sweet spot through 2006!
- Implications include 2GB/slot for 2Rx4

- 4 Rank Modules will increase market share
- Stacking will be the lowest cost path to 4GB
SimpleTech
Postage Stamp BGA Stack
Postage Stamp Features

- 2 DRAMs (one under cavity)
- Cavity Substrate
- High Reliability Ball-less Vertical Interconnect
- Decoupling Capacitors
- Probe Points on All Signals and Voltages
Thermal path to all ground planes then to surface copper flood – entire DIMM becomes a heat spreader
Designing for Performance

SimpleTech Postage Stamp stack

Planar single sided

Unequal Trace Lengths

Equal Trace Lengths

Planar double sided

Transmission line stack
Module Markets: Desktop & Mobile
PC Market: Unified View

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop PC</td>
<td>DDR2-667 UDIMM 2 Rank</td>
<td>DDR2-800 UDIMM 2 Rank</td>
<td>DDR3-1066 UDIMM 2 Rank</td>
</tr>
<tr>
<td>Notebook PC</td>
<td>DDR2-667 SO-DIMM 2 or 4 Rank</td>
<td>DDR2-800 SO-DIMM 2 or 4 Rank</td>
<td>DDR3-1066 SO-DIMM 2 or 4 Rank</td>
</tr>
<tr>
<td>Subnotebook PC</td>
<td>DDR2-667 Micro-DIMM 2 or 4 Rank</td>
<td>DDR2-800 Micro-DIMM 2 or 4 Rank</td>
<td>DDR3-1066 Micro-DIMM 2 or 4 Rank</td>
</tr>
</tbody>
</table>

DDR3 Transition
Why SO- and Micro-DIMM?

DDR2 SO-DIMM with Edge Connector Socket

- Thickness = 5.2 mm
- 2D Layout efficiency = 1654 / 2489 = 66%
- 1GB → 79KB/mm³

DDR2 Micro-DIMM with Mezzanine Connector

- Thickness = 5.65 mm
- 2D Layout efficiency = 1318 / 1620 = 81%
- 1GB → 112KB/mm³

142% cubic density ratio advantage using Micro-DIMM versus SO-DIMM
Module Markets:
Servers & Workstations
Fragmentation

Diverging views in server segment

1. RDIMM → FB-DIMM in all segments; DDR2 FB-DIMM a huge success

2. DDR2 → DDR3 RDIMM; FB-DIMM not “real” until DDR3 if at all

JEDEC roadmaps support either path
Server Market View #1

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE Server</td>
<td>DDR2-400 RDIMM 2 Rank</td>
<td>DDR2-533 FB-DIMM</td>
<td>DDR2-667 FB-DIMM</td>
</tr>
<tr>
<td>Mid Server</td>
<td>DDR2-400 RDIMM 2 Rank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LE Server</td>
<td>DDR2-400 RDIMM 2 Rank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPC</td>
<td>DDR2-533 UDIMM 2 Rank</td>
<td>DDR2-667 UDIMM 2 Rank</td>
<td>DDR3-1333 UDIMM 2 Rank</td>
</tr>
</tbody>
</table>

“RDIMM is obsolete next year”
Server Market View #2

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE Server</td>
<td>DDR1-266 RDIMM</td>
<td>DDR2-533 RDIMM</td>
<td>FB-DIMM</td>
</tr>
<tr>
<td></td>
<td>4 Rank</td>
<td>4 Rank</td>
<td>in 2008?</td>
</tr>
<tr>
<td>Mid Server</td>
<td>DDR1-333 RDIMM</td>
<td>DDR2-667 RDIMM</td>
<td>DDR3-1333</td>
</tr>
<tr>
<td></td>
<td>4 Rank</td>
<td>4 Rank</td>
<td>RDIMM</td>
</tr>
<tr>
<td>LE Server</td>
<td>DDR1-400 RDIMM</td>
<td>DDR2-667 RDIMM</td>
<td>DDR3-1333</td>
</tr>
<tr>
<td></td>
<td>4 Rank</td>
<td>4 Rank</td>
<td>RDIMM</td>
</tr>
<tr>
<td>HPC</td>
<td>DDR1-400 UDIMM</td>
<td>DDR2-667 UDIMM</td>
<td>DDR3-1333</td>
</tr>
<tr>
<td></td>
<td>2 Rank</td>
<td>2 Rank</td>
<td>UDIMM</td>
</tr>
</tbody>
</table>
Form Factor Wars

- 1.2” (30mm) standard chosen in 1999 based on 1U server market projections

- But, market fragmenting
 - Blade needs 18.3mm (VLP)
 - 1U needs 30mm (LP)
 - 2U can use 38mm or taller

- OEMs “demand” one size fits all … but …
Blade Server, 1.2” Module

Cool Air

Heated Air

Angled Socket

CPU

CPU

Blade Server

Top View

17,700 mm²

30 mm DIMM
The VLP Form Factor

133.35 mm (5.25”)

18.3 mm (0.72”)

14.3 mm (0.56”)
Usable Layout Area

4 mm (0.158”)
4 Rank RDIMM

Requires 2 extra rank select signals routed on motherboard

BIOS updated to detect SPD byte 5 = ‘4’

DDR1 & DDR2 4 rank specs approved
Fully Buffered DIMM
Motivation for FB-DIMM

As speeds increase, the number of RDIMMs per channel decrease.

FB-DIMM supports 8 slots per channel at any speed.
Fully Buffered DIMM

- Solves stub bus timing challenges
- 16GB per channel (8 DIMMs per channel)
- Eases DDR2 → DDR3 transition
- Cost and thermal issues may limit use
- Single DIMM failure can cause channel failure
- Intellectual property questions delay approval
FB-DIMM Design

4.8GHz → 9.6GHz
5-7W of power
Center of module – no good direction for cooling
Constantly draining power through termination

Expensive 655 ball BGA package
Requires heat sink

Very tricky thermal design challenge
Under Consideration

- VLP FB-DIMM
 - Repackaging the AMB to 14mm for VLP
- 4 Rank support
 - 4GB per slot → 8GB per slot
- Spare bit lane
 - Increased reliability for non-stop mission critical systems
Unbuffered & Registered DIMMs
Typical System Configuration

- Two slots per channel
- Dual channel memory controller
 - Unbuffered: 2 ranks per slot, 8GB
 - Registered: 4 ranks per slot, 16GB
DDR3 Unbuffered Modules

VLP Form Factor Impractical!!!
DDR3 RDIMM Fly-By

Support for 2 ranks (36 DRAMs) and 4 ranks (72 DRAMs) – VLP enabled
Registering Clock Driver

<table>
<thead>
<tr>
<th>Registers/Redrivers</th>
<th>Control Registers</th>
<th>Address Command</th>
<th>Parity Logic</th>
<th>Phase Locked Loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Par_In</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input: ...
Output: ...
Err_Out#: ...
CKn/CKn#: ...

SimpleTech
DDR3 RDIMM

Register/PLL ballout defined for clean routing
Address Bus Routing

So clean it’s beautiful!
DDR3 RDIMM Summary

• Compatible with UDIMM controller
 – Eases adoption for existing controllers
• Single low pin count register/PLL
 – Lower cost
 – Simpler layout
 – Size enables VLP (18.3mm) RDIMM
• Integrated PLL with only 4 output pairs
 – Lower power
• 4 rank support designed in
Industry Wide Support

<table>
<thead>
<tr>
<th>Raw card A: 1Rx8 (1-4 GB)</th>
<th>Micron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw card B: 2Rx8 (2-8 GB)</td>
<td>Samsung</td>
</tr>
<tr>
<td>Raw card C: 1Rx4 (2-8 GB)</td>
<td>Elpida</td>
</tr>
<tr>
<td>Raw card D: 2Rx4 (4-16 GB) – Stacked</td>
<td>SimpleTech</td>
</tr>
<tr>
<td>Raw card E: 2Rx4 (4-16 GB) – Planar</td>
<td>Infineon</td>
</tr>
</tbody>
</table>
What Happens in Server & Workstation Market?
FB-DIMM or RDIMM?

- 8 DIMMs per channel
 - X 2GB per DIMM
 - = 16GB per channel
 - Low pin count
 - High cost
 - High heat

- 2 DIMMs per channel
 - X 4GB per DIMM
 - = 8GB per channel
 - High pin count
 - Low cost
 - Low heat

Biggest volume is 4-8 slots total

Too early to determine which will be the next mainstream server memory.
Router/Networking Markets
Router & Networking

<table>
<thead>
<tr>
<th>Year</th>
<th>High End Routers</th>
<th>Low End Routers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>DDR1 RDIMM</td>
<td>DDR1 SO-DIMM</td>
</tr>
<tr>
<td>2006</td>
<td>DDR2 Mini-RDIMM</td>
<td>DDR2 SO-DIMM</td>
</tr>
<tr>
<td>2007</td>
<td>DDR3 Mini-RDIMM</td>
<td>DDR3 SO-DIMM</td>
</tr>
</tbody>
</table>

- Split between those that need ECC and those that don’t need ECC
- FB-DIMM not a fit for this market

72b-SO-RDIMM (4 rank)
Mini-RDIMM Form Factor

- JEDEC ballot in process to add:
 - Support for address/command parity
 - Support for 4 ranks of memory
- Task group for DDR3 Mini-RDIMM

82mm versus 133mm = 40% reduction in size versus full size RDIMM
New! 72b-SO-RDIMM

- SO-DIMM sized module with 72 bit bus
- Reuse existing mobile sockets (right angle) with no voltage key change
- Performance to DDR2-667
- 512MB/1GB sweet spot, 2GB capable
72b-SO-RDIMM Pinout

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Front Side</th>
<th>Pin #</th>
<th>Back Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{REF}</td>
<td>2</td>
<td>V_{SS}</td>
<td>51</td>
<td>DQ18</td>
<td>52</td>
<td>V_{SS}</td>
<td>101</td>
<td>V_{DD}</td>
<td>102</td>
<td>A3</td>
<td>151</td>
<td>V_{SS}</td>
<td>152</td>
<td>V_{SS}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DQ0</td>
<td>4</td>
<td>DQ4</td>
<td>53</td>
<td>DQ19</td>
<td>54</td>
<td>DQ28</td>
<td>103</td>
<td>A5</td>
<td>104</td>
<td>A1</td>
<td>153</td>
<td>DQSS</td>
<td>154</td>
<td>DM5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>V_{SS}</td>
<td>6</td>
<td>DQ5</td>
<td>55</td>
<td>DQ24</td>
<td>56</td>
<td>V_{SS}</td>
<td>105</td>
<td>A4</td>
<td>106</td>
<td>V_{DD}</td>
<td>156</td>
<td>DQSS</td>
<td>156</td>
<td>V_{SS}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DQ1</td>
<td>8</td>
<td>V_{SS}</td>
<td>57</td>
<td>DQ24</td>
<td>58</td>
<td>V_{SS}</td>
<td>107</td>
<td>A2</td>
<td>108</td>
<td>A0</td>
<td>157</td>
<td>V_{SS}</td>
<td>158</td>
<td>DQ46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DQS0</td>
<td>10</td>
<td>DM0</td>
<td>59</td>
<td>DQ25</td>
<td>60</td>
<td>DM3</td>
<td>109</td>
<td>V_{DD}</td>
<td>110</td>
<td>BA1</td>
<td>158</td>
<td>DQ42</td>
<td>160</td>
<td>DQ47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>DQS0</td>
<td>12</td>
<td>V_{SS}</td>
<td>61</td>
<td>V_{SS}</td>
<td>62</td>
<td>V_{SS}</td>
<td>111</td>
<td>A10 / AP</td>
<td>112</td>
<td>V_{SS}</td>
<td>161</td>
<td>V_{SS}</td>
<td>162</td>
<td>V_{SS}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>V_{SS}</td>
<td>14</td>
<td>DQ6</td>
<td>63</td>
<td>DQS3</td>
<td>64</td>
<td>DQ30</td>
<td>113</td>
<td>BA0</td>
<td>114</td>
<td>V_{DD}</td>
<td>163</td>
<td>V_{SS}</td>
<td>164</td>
<td>DQ52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>DQ2</td>
<td>16</td>
<td>DQ7</td>
<td>65</td>
<td>DQS3</td>
<td>66</td>
<td>DQ31</td>
<td>115</td>
<td>WE</td>
<td>116</td>
<td>V_{SS}</td>
<td>165</td>
<td>DQ48</td>
<td>166</td>
<td>DQ53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>DQ3</td>
<td>18</td>
<td>V_{SS}</td>
<td>67</td>
<td>V_{SS}</td>
<td>68</td>
<td>V_{SS}</td>
<td>117</td>
<td>V_{DD}</td>
<td>118</td>
<td>DQ49</td>
<td>167</td>
<td>V_{SS}</td>
<td>168</td>
<td>V_{SS}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>V_{SS}</td>
<td>20</td>
<td>DQ12</td>
<td>69</td>
<td>DQ26</td>
<td>70</td>
<td>CB4</td>
<td>119</td>
<td>CAS</td>
<td>120</td>
<td>V_{DD}</td>
<td>169</td>
<td>V_{SS}</td>
<td>170</td>
<td>DM6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>DQ8</td>
<td>22</td>
<td>DQ13</td>
<td>71</td>
<td>DQ27</td>
<td>72</td>
<td>CB5</td>
<td>121</td>
<td>V_{SS}</td>
<td>122</td>
<td>A13</td>
<td>171</td>
<td>DQS5</td>
<td>172</td>
<td>V_{SS}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>DQ9</td>
<td>24</td>
<td>V_{SS}</td>
<td>73</td>
<td>V_{SS}</td>
<td>74</td>
<td>V_{SS}</td>
<td>123</td>
<td>V_{DD}</td>
<td>124</td>
<td>V_{SS}</td>
<td>173</td>
<td>DQS6</td>
<td>174</td>
<td>DQ54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>V_{SS}</td>
<td>26</td>
<td>DM1</td>
<td>75</td>
<td>CB0</td>
<td>76</td>
<td>DM3</td>
<td>125</td>
<td>NC / 53</td>
<td>126</td>
<td>CK</td>
<td>175</td>
<td>V_{SS}</td>
<td>176</td>
<td>DQ55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>DQS1</td>
<td>28</td>
<td>V_{SS}</td>
<td>77</td>
<td>CB1</td>
<td>78</td>
<td>V_{SS}</td>
<td>127</td>
<td>V_{SS}</td>
<td>128</td>
<td>V_{SS}</td>
<td>177</td>
<td>DQ50</td>
<td>178</td>
<td>V_{SS}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>DQS1</td>
<td>30</td>
<td>DQ14</td>
<td>79</td>
<td>V_{SS}</td>
<td>80</td>
<td>CB5</td>
<td>129</td>
<td>DQ32</td>
<td>130</td>
<td>V_{SS}</td>
<td>179</td>
<td>DQ51</td>
<td>180</td>
<td>DQ60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>V_{SS}</td>
<td>32</td>
<td>DQ15</td>
<td>81</td>
<td>DQS6</td>
<td>82</td>
<td>CB7</td>
<td>131</td>
<td>DQ33</td>
<td>132</td>
<td>DQ36</td>
<td>181</td>
<td>V_{SS}</td>
<td>182</td>
<td>DQ61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>DQ10</td>
<td>34</td>
<td>V_{SS}</td>
<td>83</td>
<td>DQS8</td>
<td>84</td>
<td>V_{SS}</td>
<td>133</td>
<td>V_{SS}</td>
<td>134</td>
<td>DQ37</td>
<td>183</td>
<td>DQ56</td>
<td>184</td>
<td>V_{SS}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>DQ11</td>
<td>36</td>
<td>DQ20</td>
<td>85</td>
<td>V_{SS}</td>
<td>86</td>
<td>CB2</td>
<td>135</td>
<td>DQS4</td>
<td>136</td>
<td>V_{SS}</td>
<td>185</td>
<td>DQ57</td>
<td>186</td>
<td>DM7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>V_{SS}</td>
<td>38</td>
<td>DQ21</td>
<td>87</td>
<td>CKE</td>
<td>88</td>
<td>CB3</td>
<td>137</td>
<td>DQS4</td>
<td>138</td>
<td>DM4</td>
<td>187</td>
<td>V_{SS}</td>
<td>188</td>
<td>DQ62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>DQ16</td>
<td>40</td>
<td>V_{SS}</td>
<td>89</td>
<td>NC / 52</td>
<td>90</td>
<td>V_{SS}</td>
<td>139</td>
<td>V_{SS}</td>
<td>140</td>
<td>V_{SS}</td>
<td>189</td>
<td>DQS7</td>
<td>190</td>
<td>V_{SS}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>DQ17</td>
<td>42</td>
<td>RESET</td>
<td>91</td>
<td>NC / A14</td>
<td>92</td>
<td>A12</td>
<td>141</td>
<td>DQ34</td>
<td>142</td>
<td>DQ38</td>
<td>191</td>
<td>DQ57</td>
<td>192</td>
<td>DQ63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>V_{SS}</td>
<td>44</td>
<td>DM2</td>
<td>93</td>
<td>V_{DD}</td>
<td>94</td>
<td>A9</td>
<td>143</td>
<td>DQS5</td>
<td>144</td>
<td>DQ39</td>
<td>193</td>
<td>DQ58</td>
<td>194</td>
<td>SDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>DQS2</td>
<td>46</td>
<td>V_{SS}</td>
<td>95</td>
<td>BA2</td>
<td>96</td>
<td>A8</td>
<td>145</td>
<td>V_{SS}</td>
<td>146</td>
<td>V_{SS}</td>
<td>195</td>
<td>V_{SS}</td>
<td>196</td>
<td>SCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>DQS2</td>
<td>48</td>
<td>DQ22</td>
<td>97</td>
<td>A11</td>
<td>98</td>
<td>V_{DD}</td>
<td>147</td>
<td>DQ40</td>
<td>148</td>
<td>DQ44</td>
<td>197</td>
<td>DQ59</td>
<td>198</td>
<td>SA1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>V_{SS}</td>
<td>50</td>
<td>DQ23</td>
<td>99</td>
<td>A7</td>
<td>100</td>
<td>A6</td>
<td>149</td>
<td>DQ41</td>
<td>150</td>
<td>DQ45</td>
<td>199</td>
<td>V_{DD}</td>
<td>200</td>
<td>SA0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mini-RDIMM vs 72b-SO-RDIMM

- Module = 82 x 30mm
- Component area = 78 x 26mm
- 244 pins, 0.6 mm pitch

- Module = 67.6 x 30mm
- Component area = 63.6 x 26mm
- 200 pins, 0.6 mm pitch
Key Differences

<table>
<thead>
<tr>
<th>Mini-RDIMM</th>
<th>72b-SO-RDIMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>• X4 DRAM supported</td>
<td>• X4 DRAM not supported</td>
</tr>
<tr>
<td>• 4 rank supported (proposed)</td>
<td>• 4 rank supported</td>
</tr>
<tr>
<td>• 8GB max</td>
<td>• 4GB max</td>
</tr>
<tr>
<td>• 3 clock pairs → unbuffered supported</td>
<td>• One clock pair → PLL needed</td>
</tr>
<tr>
<td>• Address/command parity supported (proposed)</td>
<td>• Address/command parity not possible (no pins)</td>
</tr>
</tbody>
</table>
Peripheral Markets
Peripherals

- Devices that need smaller granularity
 - A single 512Mb chip contains 64MB of data!
- Small footprint is desirable
 - 1 to 4 DRAMs typical
- Reuses SDRAM 144-pin SO-DIMM form
- Common pinout for DDR1/2/3 and 16/32 bits
Modules for Peripherals

Raw Card A, Front View

Raw Card B, Front View

Raw Card A, Rear View

Raw Card B, Rear View
Memory Module Summary

- DDR2 transition under way, DDR3 coming
- PC market form factors fairly stable
 - UDIMM, SO-DIMM, Micro-DIMM
 - DDR1 → DDR2 → DDR3
- Server market fragmenting
 - RDIMM → FB-DIMM or RDIMM → RDIMM?
 - Module height = 30mm? 18.3mm?
- Networking: Mini-RDIMM
- Peripherals: 16b-SO-DIMM 72b-SO-RDIMM (4 rank)
Thank You

Questions?